If it's not what You are looking for type in the equation solver your own equation and let us solve it.
f^2-19f=0
a = 1; b = -19; c = 0;
Δ = b2-4ac
Δ = -192-4·1·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-19}{2*1}=\frac{0}{2} =0 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+19}{2*1}=\frac{38}{2} =19 $
| 4x+48=7 | | 4s=37 | | 11.2=f+1.8 | | X^2+5x+6=15 | | -15.3=-7.5k+-9.66 | | 3x+3-x+2=x+4 | | 7x+5=8x-3+9x | | 8x+50=1300 | | 4X^2+2x-702=0 | | X^2+2x-702=0 | | 5y+6-12y=−29 | | (8x-2)2=12x+24 | | 40n-5n=-2 | | 5y+6-12y=(−29) | | 8/3x-9/4x=-52/12 | | 14z+100=4z | | 6-3x=10x+6 | | F(t)=-2t+7 | | 4/5/3=x/100 | | 20d/30=38 | | 15x-(12+11x)+(23-3x)=12 | | 10x^-11x-1=0 | | 9z+12=9 | | k-13=2+17 | | 34-11x=14+9x | | 5n-9=-12 | | 4b+4b+12-7b=11 | | 1.2*10-5=4x3+0.010x | | (2x-3)/(7x+4)=2/5 | | .10x(x)=4600 | | 3/1/2=c | | x^2+5x-20=16 |